Abstract

The side chain of arginine, n-propylguanidinium (nPG), reversibly decreases peak sodium conductance and increases the speed of sodium current decay, when perfused internally. Effects are voltage dependent and are more pronounced at high depolarizations. Results are also dependent on the sodium concentration gradient. Both the decline in peak conductance and the speeding of inactivation are greater if the sodium concentration gradient is reversed from the normal. The decrease in peak sodium current is too large to be due solely to the faster decay kinetics. The difference is not due to a change in slow inactivation of the channel. Sodium current inactivation has also been studied with a double pulse procedure. Results show that at - 70 mV, nPG leaves sodium channels rapidly (less than 500 microseconds) in normal sodium gradient, but more slowly (greater than 1 ms) in reversed sodium gradient. Several structural analogs of nPG have been tested. Shortening the alkyl chain weakens effects significantly. Arginine itself, which contains extra charged groups, is also less effective. n-Propylammonium is active but with an apparent affinity only one-fifth that of arginine. We conclude that nPG acts within the sodium channel, and has at least two modes of action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.