Abstract

In this paper, we use the Bloch wave method to study the asymptotic behavior of the solution of the Laplace equation in a periodically perforated domain, under a non-homogeneous Neumann condition on the boundary of the holes, as the size of the holes goes to zero more rapidly than the domain period. This method allows to prove that, when the hole size exceeds a given threshold, the non-homogeneous boundary condition generates an additional term in the homogenized problem, commonly referred to as “the strange term” in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.