Abstract
With the rapid development of stereo image applications, there is an increasing demand to develop a versatile tool to evaluate the perceived quality of stereo images. Therefore, in this study, a blind stereo image quality evaluation (SIQE) algorithm based on convolutional network and saliency weighting is proposed. The main network framework used by the algorithm is the quality map generation network, which is used to train the distortion image dataset and quality map label to obtain an optimal network framework. Finally, the left view, right view, and cyclopean view of the stereo image are used as inputs to the network frame, respectively, and then weighted fusion for the final stereo image quality score. The experimental results reveal that the proposed SIQE algorithm can improve the accuracy of the image quality prediction and prediction score to a certain extent and has good generalization ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.