Abstract
Blind source separation (BSS) is an effective method for the fault diagnosis and classification of mixture signals with multiple vibration sources. The traditional BSS algorithm is applicable to the number of observed signals is no less to the source signals. But BSS performance is limit for the under-determined condition that the number of observed signals is less than source signals. In this research, we provide an under-determined BSS method based on the advantage of time-frequency analysis and empirical mode decomposition (EMD). It is suitable for weak feature extraction and pattern recognition. Firstly, vibration signal is decomposed by using EMD. The number of source signals are estimated and the optimal observed signals are selected according to the EMD. Then, the vibration signal and the optimal observed signals are used to construct the multi-channel observed signals. In the end, BSS based on time-frequency analysis are used to the constructed signals. Gearbox signals are used to verify the effectiveness of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.