Abstract

We examine the problem of learning to cooperate in the context of wireless communication. In our setting, two agents must learn modulation schemes that enable them to communicate across a power-constrained additive white Gaussian noise channel. We investigate whether learning is possible under different levels of information sharing between distributed agents which are not necessarily co-designed. We employ the "Echo" protocol, a "blind" interactive learning protocol where an agent hears, understands, and repeats (echoes) back the message received from another agent, simultaneously training itself to communicate. To capture the idea of cooperation between "not necessarily co-designed" agents we use two different populations of function approximators - neural networks and polynomials. We also include interactions between learning agents and non-learning agents with fixed modulation protocols such as QPSK and 16QAM. We verify the universality of the Echo learning approach, showing it succeeds independent of the inner workings of the agents. In addition to matching the communication expectations of others, we show that two learning agents can collaboratively invent a successful communication approach from independent random initializations. We complement our simulations with an implementation of the Echo protocol in software-defined radios. To explore the continuum of co-design, we study how learning is impacted by different levels of information sharing between agents, including sharing training symbols, losses, and full gradients. We find that co-design (increased information sharing) accelerates learning. Learning higher order modulation schemes is a more difficult task, and the beneficial effect of co-design becomes more pronounced as the task becomes harder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.