Abstract
While researches on model-based blind single image super-resolution (SISR) have achieved tremendous successes recently, most of them do not consider the image degradation sufficiently. Firstly, they always assume image noise obeys an independent and identically distributed (i.i.d.) Gaussian or Laplacian distribution, which largely underestimates the complexity of real noise. Secondly, previous commonly-used kernel priors (e.g., normalization, sparsity) are not effective enough to guarantee a rational kernel solution, and thus degenerates the performance of subsequent SISR task. To address the above issues, this paper proposes a model-based blind SISR method under the probabilistic framework, which elaborately models image degradation from the perspectives of noise and blur kernel. Specifically, instead of the traditional i.i.d. noise assumption, a patch-based non-i.i.d. noise model is proposed to tackle the complicated real noise, expecting to increase the degrees of freedom of the model for noise representation. As for the blur kernel, we novelly construct a concise yet effective kernel generator, and plug it into the proposed blind SISR method as an explicit kernel prior (EKP). To solve the proposed model, a theoretically grounded Monte Carlo EM algorithm is specifically designed. Comprehensive experiments demonstrate the superiority of our method over current state-of-the-arts on synthetic and real datasets. The source code is available at https://github.com/zsyOAOA/BSRDM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.