Abstract

Emerging communication networks are envisioned to support massive wireless connectivity of heterogeneous devices with sporadic traffic and diverse requirements in terms of latency, reliability, and bandwidth. Providing multiple access to an increasing number of uncoordinated users and sharing the limited resources become essential in this context. In this work, we revisit the random access (RA) problem and exploit the continuous angular group sparsity feature of wireless channels to propose a novel RA strategy that provides low latency, high reliability, and massive access with limited bandwidth resources in an all-in-one package. To this end, we first design a reconstruction-free goal-oriented optimization problem, which only preserves the angular information required to identify the active devices. To solve this, we propose an alternating direction method of multipliers (ADMM) and derive closed-form expressions for each ADMM step. Then, we design a clustering algorithm that assigns the users in specific groups from which we can identify active stationary devices by their angles. For mobile devices, we propose an alternating minimization algorithm to recover their data and their channel gains simultaneously, which allows us to identify active mobile users. Simulation results show significant performance gains in terms of active user detection and false alarm probabilities as compared to state-of-the-art RA schemes, even with limited number of preambles. Moreover, unlike prior work, the performance of the proposed blind goal-oriented massive access does not depend on the number of devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.