Abstract

This paper proposes a novel non-data-aided maximum likelihood (ML) approach for the estimation of the residual timing error in OFDM receivers. The novel approach effectively utilizes the finite alphabet property of the received symbol constellation to perform a near perfect residual timing error estimation. Unlike some of the current techniques, the proposed approach requires no pilots and therefore is bandwidth efficient. Moreover, the reduced complexity version of the post-FFT ML algorithm minimizes the receiver computational burden. Simulation results show that the BER degradation due to residual timing error can be almost completely recovered for both AWGN and Rayleigh fading channel scenarios

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.