Abstract
The paper addresses the surging topic of H-abstractions by closed-shell molecules, such as MnO4−, α-methylstyrene, ketones, metal-oxo reagents, etc. It is found that in the normal hydrogen atom transfer (HAT) regime, closed-shell abstractors require high barriers for H-abstraction. Under certain conditions a closed-shell abstractor can bypass this penalty via a proton-coupled electron transfer (PCET) mechanism. This occurs mainly in the identity reactions, e.g. MnO4− abstracting a hydrogen atom from MnO4H−·, but not in the corresponding non-identity reactions with alkanes. The usage of the valence bond (VB) diagram model allows us to characterize the HAT/PCET mechanistic relationship and bridge their reactivity patterns. It is thus shown that in the normal HAT regime, high barriers for closed-shell abstractors occur due to the additional promotion energy that is required in order to create a radical center and “prepare” the abstractor for H-abstraction. Mixing of the PCET states into the HAT states mitigates however these high barriers. The variable HAT/PCET mixing in a reaction series is discussed and its consequences for reactivity are outlined. It is shown that non-identity reactions sample PCET characters that depend, among other factors, on the C–H bond strength of the alkane, and hence may cause the Marcus analysis to produce different identity barriers for the same identity reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.