Abstract

The aim of this study is to develop a blade mass model that incorporates a low-induction rotor (LIR) and a low-specific power concept to reduce aerodynamic loads and lower the Levelized Cost of Energy (LCoE). This blade mass model replaces the traditional simple scaling rule and incorporates the concept of LCoE reduction, presenting not only the mass distribution in the blade span direction but also the stiffness distribution. In order to achieve the desired reduction in LCoE, we developed a mathematical model that expresses blade mass as a function of the axial induction factor, which influences the aerodynamic load on the blade. We used this model to determine geometries of various low-induction rotors for 20 MW class horizontal axis wind turbine, and to identify the axial induction factor that correlates with the lowest blade mass. The chord length and twist angle in the spanwise direction of the blade were determined using PROPID’s reverse design process, based on the specified axial induction factor. Since the low-induction concept is not aerodynamically optimal, a low-specific power design approach was also adopted. This involved increasing the blade length and shifting the power curve to the left. By doing so, the AEP is increased, directly contributing to a reduction in the LCoE. Mass per unit length of the blade was presented, reflecting the distribution of airfoil type, blade geometry, and shapes of internal structures such as spars and webs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.