Abstract

The development of new near-infrared-responsive photocatalysts is a fascinating and challenging approach to acquire high photocatalytic hydrogen evolution (PHE) performance. Herein, near-infrared-responsive black CuVP2S6 and CuCrP2S6 flakes, as well as CuInP2S6 flakes, are designed and constructed for PHE. Atom-resolved scanning transmission electron microscopy images and X-ray absorption fine structure evidence the formation of ultrathin single-crystalline sheet-like structure of CuVP2S6 and CuCrP2S6. The synthetic CuVP2S6 and CuCrP2S6, with a narrow bandgap of ≈1.0eV, shows the high light-absorption edge exceeding 1100nm. Moreover, through the femtosecond-resolved transient absorption spectroscopy, CuCrP2S6 displays the efficient charge transfer and long charge lifetime (18318.1ps), which is nearly 3 and 29 times longer than that of CuVP2S6 and CuInP2S6, respectively. In addition, CuCrP2S6, with the appropriate d-band and p-band, is thermodynamically favorable for the H+ adsorption and H2 desorption by contrast with CuVP2S6 and CuInP2S6. As a result, CuCrP2S6 exhibits high PHE rates of 9.12 and 0.66mmol h-1 g-1 under simulated sunlight and near-infrared light irradiation, respectively, far exceeding other layered metal phospho-sulfides. This work offers a distinctive perspective for the development of new near-infrared-responsive photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.