Abstract
ABSTRACTThis paper introduces several forms of nested bivariate zero-inflated generalized Poisson (BZIGP) regression model which can be fitted to bivariate and zero-inflated count data. The main advantage of having several forms of BZIGP regression model is that they are nested and allow likelihood ratio test to be performed for choosing the best model. In addition, the BZIGP regression models have flexible forms of marginal mean–variance relationship, can be fitted to bivariate and zero-inflated count data with positive or negative correlations, and allow additional overdispersion of the two response variables. The BZIGP regression models are fitted to the Australian Health Survey data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.