Abstract

Motivated by an application in Magnetic Particle Imaging, we study bivariate Lagrange interpolation at the node points of Lissajous curves. The resulting theory is a generalization of the polynomial interpolation theory developed for a node set known as Padua points. With appropriately defined polynomial spaces, we will show that the node points of non-degenerate Lissajous curves allow unique interpolation and can be used for quadrature rules in the bivariate setting. An explicit formula for the Lagrange polynomials allows to compute the interpolating polynomial with a simple algorithmic scheme. Compared to the already established schemes of the Padua and Xu points, the numerical results for the proposed scheme show similar approximation errors and a similar growth of the Lebesgue constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.