Abstract
Bituminous coal-based activated carbon was modified by impregnation with melamine and heat treatment at 850 °C. Another sample was impregnated with melamine and urea and heat treated at 650 and 850 °C. Chemical and physical properties of the materials were determined using Boehm titration, thermal analysis, sorption of nitrogen and SEM with EDX. Then the H2S breakthrough capacity tests were carried out and the sorption capacity was calculated. The results revealed that carbons modified with nitrogen-containing species and heat-treated at 850 °C have a hydrogen sulfide removal capacity exceeding more then 10 times the capacity of unmodified sample. H2S on the surface of these materials is oxidized to sulfuric acid and elemental sulfur and stored in the pore system. New carbons are hypothesized to act as catalytic reactors promoting two different pathways of hydrogen sulfide oxidation in two different locations. In small micropores, where water is present, hydrogen sulfide dissociate to HS− ions and those ions are oxidized to sulfur radicals and sulfur dioxide leading to the formation of sulfuric acid. In larger pores with incorporated nitrogen, basic sites promote dissociation and formation of sulfur polymers, which are resistant to further oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.