Abstract

Recently, there has been a notable increase in the use of video content on the internet, leading for the creation of improved codecs like versatile-video-coding (VVC) and high-efficiency video-coding (HEVC). It is important to note that these video coding techniques continue to demonstrate quality degradation and the presence of noise throughout the decoded frames. A number of deep-learning (DL) algorithm-based network structures have been developed by experts to tackle this problem; nevertheless, because many of these solutions use in-loop filtration, extra bits must be sent among the encoding and decoding layers. Moreover, because they used fewer reference frames, they were unable to extract significant features by taking advantage from the temporal connection between frames. Hence, this paper introduces inter-layer motion prediction aware multi-loop video coding (ILMPA-MLVC) techniques. The ILMPA-MLVC first designs an multi-loop adaptive encoder (MLAE) architecture to enhance inter-layer motion prediction and optimization process; second, this work designs multi-loop probabilistic-bitrate aware compression (MLPBAC) model to attain improved bitrate efficiency with minimal overhead; the training of ILMPA-MLVC is done through novel distortion loss function using UVG dataset; the result shows the proposed ILMPA-MLVC attain improved peak-singal-to-noise-ratio (PSNR) and structural similarity (SSIM) performance in comparison with existing video coding techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.