Abstract

A new cell architecture for high performance digit-serial computation is presented. The design of this cell is based on the feed forward of the carry digit, which allows a high level of pipelining to increase the throughput rate with minimum latency. This will give designers greater flexibility in finding the best trade-off between hardware cost and throughput rate. A twin-pipe architecture to double the throughput rate of digit-serial/parallel multipliers is also presented. The effects of the number of pipelining levels and the twin architecture on the throughput rate and hardware cost are presented. A two's complement digit-serial/parallel multiplier which can operate on both negative and positive numbers is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.