Abstract

In this study we describe a modification of the bisulfite genomic sequencing protocol that enables detection of methylation from as few as five diploid cells from preimplantation mouse embryos. We have used bisulfite genomic sequencing to study the methylation profile of the putative imprinting element upstream of the mouseH19gene at several stages of embryonic development, including fertilized oocytes and two-cell embryos. The methylation of theH19imprinting element has recently been described extensively for midgestation embryos, but remains poorly characterized for the preimplantation stages of development, despite widespread changes in genomic DNA methylation occurring at this time. We studied the methylation profile of 35 CpG sites spanning two regions within theH19imprinting element and found that an overall pattern of allele-specific methylation was maintained at all developmental stages examined, including fertilized oocytes and two-cell embryos. However, allele-specific methylation was not maintained in an absolute fashion subsequent to the first cell division, with a clear flux between partialde novomethylation of the maternal allele and partial demethylation of the paternal allele. Our findings highlight the dynamics of methylation in the early embryo and suggest that it is the overall level of methylation that is responsible for maintenance of the imprinting element and not the methylation of individual CpG sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.