Abstract

Bistable elements are candidate structures for the evolving field of MEMS-based no-power event-driven sensors. In this paper, we present a strategy for producing bistable elements and investigate two compatible bilayer material systems for their realization using MEMS technology. Both bilayer systems leverage thermally-grown silicon dioxide as the principal stress-producing layer and a second material (either polyimide or aluminum) as the main structural layer. Arrays of buckled circular diaphragms, ranging in diameter from 100 μm to 700 μm in 50 μm increments, were fabricated and their performances were compared to modeled and FEA-simulated results. In all cases, the diaphragms buckled when DRIE-released as expected, and their buckled experimental heights were within 9.1% of the theory and 1.8% of the FEA prediction. Interestingly, the smaller diameter structures exhibited a directional bias which we investigate and forecast using FEA. These bistable mechanical elements have the ability to serve as building blocks for no-power threshold-driven smart switches. New contributions to the field include: (a) introduction of a new bistable material system made from aluminum and compressive oxide, (b) investigation of diaphragm diameter size as it related to the phenomena of bistability versus non-bistability, (c) FEA analysis of the critical transition between bistability and non-bistability, and (d) introduction of the ‘dome factor’ term to describe dome quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.