Abstract

Bistability of valence tautomeric donor–acceptor dyads formed by covalently linking a ferrocene-based electron-donor and the perchlorotriphenylmethyl radical, as the electron-acceptor, is tuned via a chemical modification of the ferrocene group. Specifically, the methylation of the ferrocene unit increases the strength of the donor group stabilizing the zwitterionic state in polar solvents and leading to an intriguing coexistence of neutral and zwitterionic species in solvents of intermediate polarity. Bistability in the crystalline phase is demonstrated by temperature dependent Mössbauer spectra. This complex and interesting behavior is quantitatively rationalized in the framework of a bottom-up modeling strategy. Optical spectra in solution are first analyzed to extract and parametrize an effective two-state molecular model, which is then adopted to rationalize the observed bistability in the solid state as due to cooperative electrostatic interchromophore interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.