Abstract

The present study aimed to analyze the behavior of different activated carbons in the adsorption and removal of bisphenol A (2-2-bis-4-hydroxypheniyl propane) from aqueous solutions in order to identify the parameters that determine this process. Two commercial activated carbons and one prepared in our laboratory from almond shells were used; they were texturally and chemically characterized, obtaining the surface area, pore size distribution, mineral matter content, elemental analysis, oxygen surface groups, and pH of the point of zero charge (pH(PZC)), among other parameters. Adsorption isotherms of bisphenol A and adsorption capacities were obtained. The capacity of the carbons to remove bisphenol A was related to their characteristics. Thus, the adsorption of bisphenol A on activated carbon fundamentally depends on the chemical nature of the carbon surface and the pH of the solution. The most favorable experimental conditions for this process are those in which the net charge density of the carbon is zero and the bisphenol A is in molecular form. Under these conditions, the adsorbent-adsorbate interactions that govern the adsorption mechanism are enhanced. Influences of the mineral matter present in the carbon samples and the solution chemistry (pH and ionic strength) were also analyzed. The presence of mineral matter in carbons reduces their adsorption capacity because of the hydrophilic nature of the matter. The presence of electrolytes in the solution favor the adsorption process because of the screening effect produced between the positively charged carbon surface and the bisphenol A molecules, with a resulting increase in adsorbent-adsorbate interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.