Abstract

Bisphenol A (BPA), a high volume production chemical compound attracts growing attention as a health-relevant xenobiotic in humans. It can directly bind to hormone receptors, enzymes, and ion channels to become biologically active. In this study we show that BPA acts as a potent blocker of voltage-activated Ca(2+) channels. We determined the mechanisms of block and the structural elements of BPA essential for its action. Macroscopic Ba(2+) / Ca(2+) currents through native L-, N-, P/Q-, T-type Ca(2+) channels in rat endocrine GH(3) cells, mouse dorsal root ganglion neurons or cardiac myocytes, and recombinant human R-type Ca(2+) channels expressed in human embryonic kidney (HEK) 293 cells were rapidly and reversibly inhibited by BPA with similar potency (EC(50) values: 26-35 μM). Pharmacological and biophysical analysis of R-type Ca(2+) channels revealed that BPA interacts with the extracellular part of the channel protein. Its action does not require intracellular signaling pathways, is neither voltage- nor use-dependent, and does not affect channel gating. This indicates that BPA interacts with the channel in its resting state by directly binding to an external site outside the pore-forming region. Structure-effect analyses of various phenolic and bisphenolic compounds revealed that 1) a double-alkylated (R-C(CH(3))(2)-R, R-C(CH(3))(CH(2)CH(3))-R), or double-trifluoromethylated sp(3)-hybridized carbon atom between the two aromatic rings and 2) the two aromatic moieties in angulated orientation are optimal for BPA's effectiveness. Since BPA highly pollutes the environment and is incorporated into the human organism, our data may provide a basis for future studies relevant for human health and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.