Abstract

Vanadium flow batteries (VFBs) are considered one of the most promising candidates for large-scale energy storage. However, VFBs suffer from relatively low power density due to severe electrochemical polarization. Herein, we report Bi single atoms supported by an N-doped carbon-regulated graphite felt electrode (Bi SAs/NC@GF) with high electrocatalytic activity and stability, owing to the greatly improved active sites and optimized Bi-N4 configuration. Electrochemical in situ characterization and theoretical calculations elucidate the desolvation process and specific inner sphere reaction mechanism of [V(H2O)6]3+/[V(H2O)6]2+. As a result, a VFB single cell assembled with Bi SAs/NC@GF achieves a much higher energy efficiency of 81.1% at 240 mA cm-2 than NC@GF (70.5%). Moreover, a 5 kW VFB stack equipped with Bi SAs/NC@GF is assembled for the first time and ran stably for over 400 cycles. This work confirms that a single-atom catalyst is efficient for scalable VFBs with high power density and low cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.