Abstract
Graphite has been the conventional lithium-ion anode for the negative electrode for the past three decades. One of the major challenges for graphite anodes is the exfoliation of graphite framework on deep cycling at a fast current rate, leading to a gradual capacity fade. In this regard, poly(vinylidene fluoride) (PVDF) has been the conventional binder widely used for stabilizing the graphite framework. Unfortunately, its nonconducting nature, slow dissolution in the electrolyte, and poor adherence to the current collector limit its utility as a robust binder for lithium-ion batteries with a long cycle life. Here, we report an n-type conjugated copolymer bis-imino-acenaphthenequinone-paraphenylene (BP) as an alternate binder material for the graphite anode. The BP binder-based anodic half-cells outperformed the PVDF-based counterpart, showing an excellent performance with a reversible capacity of 260 mA h g–1, cyclability up to 1735 long cycles at 1 C rate, and 95% capacity retention. The superior performance of the BP binder was attributed to its ability to provide mechanical robustness to the electrode laminate, maintain electronic conductivity within the electrode, and undergo n-doping in the anodic environment, influencing the formation of a thin solid electrolyte interface with low interfacial impedance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.