Abstract

Simultaneous measurements of extensional stresses and birefringence are rare, especially for polymer solutions. This paper reports such measurements using the filament stretch rheometer and a phase modulated birefringence system. Both the extensional viscosity and the birefringence increase monotonically with strain and reach a plateau. Estimates of this saturation value for birefringence, using Peterlin’s formula for birefringence of a fully extended polymer chain are in agreement with the experimental results. However, estimates of the saturation value of the extensional viscosity using Batchelor’s formula for suspensions of elongated fibres are much higher than observed. Reasons for the inability of the flow field to fully unravel the polymer chain are examined using published Brownian dynamics simulations. It is tentatively concluded that the polymer chain forms a folded structure. Such folded chains can exhibit saturation in birefringence even though the stress is less than that expected for a fully extended molecule. Simultaneous measurements of stress and birefringence during relaxation indicate that the birefringence decays much more slowly than the stress. The stress-birefringence data show a pronounced hysteresis as predicted by bead-rod models. The failure of the stress optic coefficient in strong flows is noted. Experiments were also performed wherein the strain was increased linearly with time, then held constant for a short period before being increased again. The response of the stress and birefringence in such experiments is dramatically different and can be traced to the different configurations obtained during stretching and relaxation. The results cast doubt on the appropriateness of pre-averaging the non-linear terms in constitutive equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.