Abstract

Abstract. The last glacial period is characterized by a number of millennial climate events that have been identified in both Greenland and Antarctic ice cores and that are abrupt in Greenland climate records. The mechanisms governing this climate variability remain a puzzle that requires a precise synchronization of ice cores from the two hemispheres to be resolved. Previously, Greenland and Antarctic ice cores have been synchronized primarily via their common records of gas concentrations or isotopes from the trapped air and via cosmogenic isotopes measured on the ice. In this work, we apply ice core volcanic proxies and annual layer counting to identify large volcanic eruptions that have left a signature in both Greenland and Antarctica. Generally, no tephra is associated with those eruptions in the ice cores, so the source of the eruptions cannot be identified. Instead, we identify and match sequences of volcanic eruptions with bipolar distribution of sulfate, i.e. unique patterns of volcanic events separated by the same number of years at the two poles. Using this approach, we pinpoint 82 large bipolar volcanic eruptions throughout the second half of the last glacial period (12–60 ka). This improved ice core synchronization is applied to determine the bipolar phasing of abrupt climate change events at decadal-scale precision. In response to Greenland abrupt climatic transitions, we find a response in the Antarctic water isotope signals (δ18O and deuterium excess) that is both more immediate and more abrupt than that found with previous gas-based interpolar synchronizations, providing additional support for our volcanic framework. On average, the Antarctic bipolar seesaw climate response lags the midpoint of Greenland abrupt δ18O transitions by 122±24 years. The time difference between Antarctic signals in deuterium excess and δ18O, which likewise informs the time needed to propagate the signal as described by the theory of the bipolar seesaw but is less sensitive to synchronization errors, suggests an Antarctic δ18O lag behind Greenland of 152±37 years. These estimates are shorter than the 200 years suggested by earlier gas-based synchronizations. As before, we find variations in the timing and duration between the response at different sites and for different events suggesting an interaction of oceanic and atmospheric teleconnection patterns as well as internal climate variability.

Highlights

  • Greenland and Antarctic ice cores provide high-resolution records of abrupt climate events occurring throughout the last glacial period (11.7–115 ka)

  • Detailed investigation of the stratigraphy of the 25 major DO events originally identified has revealed that some of the events are composed of several separate warming and cooling events, leading to a total of 31–33 abrupt warming events during the last glacial period depending on the definition employed (Rasmussen et al, 2014)

  • We note that most of the identified bipolar match points fall within Greenland interstadial periods and rather few are located in stadials

Read more

Summary

Introduction

Greenland and Antarctic ice cores provide high-resolution records of abrupt climate events occurring throughout the last glacial period (11.7–115 ka). In Greenland ice cores, Dansgaard–Oeschger (DO) events describe a series of characteristic climate events (Dansgaard et al, 1993; North Greenland Ice Core Project members, 2004) that involve warming transitions of up to 16.5 ◦C (Kindler et al, 2014) occurring within decades (Erhardt et al, 2019). DO events are believed to originate in the North Atlantic but have a global climatic impact that is documented in a wide range of paleoclimate archives across the Northern (Voelker and workshop participants, 2002) and Southern Hemispheres (Pedro et al, 2018). In Antarctic ice cores, the corresponding Antarctic Isotopic Maxima (AIM) are characteristic warm events that are more gradual and of smaller amplitude than the Greenland events (EPICA community members, 2006). Knowledge of the exact phasing of climate in the two hemispheres is crucial for deciphering the driving mechanism of the abrupt climate variability of the last glacial period and the climatic teleconnection patterns that connect the two hemispheres

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.