Abstract

A novel electrolyzer has been proposed for CO2 reduction to CO, concurrently generating NaClO as a byproduct at the anode. The cell is divided into two compartments by a bipolar membrane, which plays a pivotal role in the dissociation of H2O into H+ and OH−. In the cathode compartment, CO2 is reduced to CO within a neutral organic solution. Simultaneously, in the anode compartment, Cl− undergoes oxidation to form ClO− within a basic aqueous solution. The electrolyzer remains stable during 10 h of electrolysis, and the current density reaches 76.35 mA cm−2 at a potential of -2.4 V (vs SHE), with the Faradaic efficiency of CO formation stable at 93 %. By increasing the product values, CO2 electro-reduction technology can be promoted to industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.