Abstract

Plants are colonized by phylogenetically diverse microorganisms that affect plant growth and health. Representative genome-sequenced culture collections of bacterial isolates from model plants, including Arabidopsis thaliana, have recently been established. These resources provide opportunities for systematic interaction screens combined with genome mining to discover uncharacterized natural products. Here, we report on the biosynthetic potential of 224 strains isolated from the A. thaliana phyllosphere. Genome mining identified more than 1,000 predicted natural product biosynthetic gene clusters (BGCs), hundreds of which are unknown compared to the MIBiG database of characterized BGCs. For functional validation, we used a high-throughput screening approach to monitor over 50,000 binary strain combinations. We observed 725 inhibitory interactions, with 26 strains contributing to the majority of these. A combination of imaging mass spectrometry and bioactivity-guided fractionation of the most potent inhibitor, the BGC-rich Brevibacillus sp. Leaf182, revealed three distinct natural product scaffolds that contribute to the observed antibiotic activity. Moreover, a genome mining-based strategy led to the isolation of a trans-acyltransferase polyketide synthase-derived antibiotic, macrobrevin, which displays an unprecedented natural product structure. Our findings demonstrate that the phyllosphere is a valuable environment for the identification of antibiotics and natural products with unusual scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.