Abstract
Cadmium oxide (CdO) microspheres with a porous hollow microstructure were prepared by a facile yeast mediated bio-template route. The yeast provides a solid scaffold for the deposition of cadmium hydroxide (Cd(OH) 2) from cadmium acetate and sodium hydroxide solutions to form the hybrid Cd(OH) 2@yeast precursor. Thermal conversions of this at above 500 °C in air have produced hollow CdO microspheres. The products were characterized by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), thermal gravimetric and differential thermal analysis (TGA–DTA), and Brunauer–Emmett–Teller (BET) surface analysis respectively. The obtained CdO microspheres have uniform size (length = 2.6 ± 0.4 μm; width = 2.0 ± 0.2 μm) and a well defined, continuous, mesoporous hollow microstructure. The shell is about 250–280 nm in thickness. The mechanism of formation of Cd(OH) 2@yeast precursor and its conversion to CdO hollow microspheres is discussed. In comparison with traditional template-directed method, the present strategy represents a general, economical and environmentally benign route for the formation of metal oxide hollow microspheres. These materials have potential applications in different fields such as encapsulation, drug delivery, efficient catalysis, battery materials and photonic crystals. The method presented can be extended to the synthesis of other inorganic hollow microstructures of different sizes and shapes by pre-selecting suitable bio-templates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.