Abstract

Agricultural sustainability may represent the greatest encumbrance to increasing food production. On the other hand, as a component of sustainability, replacement of chemical fertilizers by bio-fertilizers has the potential to lower costs for farmers, to increase yields, and to mitigate greenhouse-gas emissions and pollution of water and soil. Rhizobia and plant-growth-promoting rhizobacteria (PGPR) have been broadly used in agriculture, and advances in our understanding of plant-bacteria interactions have been achieved; however, the use of signaling molecules to enhance crop performance is still modest. In this study, we evaluated the effects of concentrated metabolites (CM) from two strains of rhizobia—Bradyrhizobium diazoefficiens USDA 110T (BD1) and Rhizobium tropici CIAT 899T (RT1)—at two concentrations of active compounds (10–8 and 10–9 M)—on the performances of two major plant-microbe interactions, of Bradyrhizobium spp.-soybean (Glycine max (L.) Merr.) and Azospirillum brasilense-maize (Zea mays L.). For soybean, one greenhouse and two field experiments were performed and effects of addition of CM from the homologous and heterologous strains, and of the flavonoid genistein were investigated. For maize, three field experiments were performed to examine the effects of CM from RT1. For soybean, compared to the treatment inoculated exclusively with Bradyrhizobium, benefits were achieved with the addition of CM-BD1; at 10–9 M, grain yield was increased by an average of 4.8%. For maize, the best result was obtained with the addition of CM-RT1, also at 10–9 M, increasing grain yield by an average of 11.4%. These benefits might be related to a combination of effects attributed to secondary compounds produced by the rhizobial strains, including exopolysaccharides (EPSs), plant hormones and lipo-chitooligosaccharides (LCOs). The results emphasize the biotechnological potential of using secondary metabolites of rhizobia together with inoculants containing both rhizobia and PGPR to improve the growth and yield of grain crops.

Highlights

  • Sustainability probably represents the greatest challenge to increase food production

  • We evaluated the use of concentrated rhizobial metabolites on the performances of the two major grain crops that are frequently inoculated in South America, the Bradyrhizobium spp.-soybean and Azospirillum brasilensemaize (Zea mays L.) associations

  • For soybean [Glycine max (L.) Merr.], liquid inoculants were prepared with Bradyrhizobium strains CPAC 15 (=SEMIA 5079) and CPAC 7 (=SEMIA 5080), the combination most used in commercial inoculants in Brazil (Hungria et al 2006), each at a concentration of 5 × 109 cells mL–1

Read more

Summary

Introduction

Sustainability probably represents the greatest challenge to increase food production. Bio-fertilizers can help meet the demands of sustainable, productive agriculture at low cost. Rhizobial inoculants have been applied to legume crops for over 120 years as bio-fertilizers, and inoculants carrying plant-growth-promoting rhizobacteria (PGPR) have been used in agriculture for over half a century (Okon and Labandera-Gonzalez 1994; Bashan and Bashan 2005; Hungria et al 2005; Ormeño-Orrillo et al 2012a). A molecular dialogue between the host plant and the bacterium results in root nodulation and nitrogen fixation, involving plant flavonoids and bacterial nodulation (Nod) factors, identified as lipochitooligosaccharides (LCOs) (Schultze and Kondorosi 1996; Hungria and Stacey 1997; Perret et al 2000; Oldroyd and Downie 2008; Ferguson et al 2010); the roles of other molecules, such as those related to type-III secretion systems and exopolysaccharides (EPSs) (Perret et al 2000; Fauvart and Michiels 2008; Downie 2010) have been emphasized

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.