Abstract

ObjectiveThis study aimed to develop expert fuzzy logic model to assist physicians in the prediction of postoperative complications of prostatic hyperplasia before surgery. MethodsA method for classification of surgical risks was developed. The effect of rotation of the current-voltage characteristics at biologically active points (acupuncture points) was used for the formation of classifier descriptors. The effect determined reversible and non-reversible changes in electrical resistance at acupuncture points with periodic exposure to a sawtooth probe current. Then, the developed method was tested on the prediction of the success of surgical treatment of benign prostatic hyperplasia. ResultsInput descriptors were obtained from collected data including current-voltage characteristics of 5 acupuncture points and composed of 27 arrays feeding in the model. The maximum diagnostic sensitivity of the classifier for the success of a surgical operation in the control sample was 88% and for testing data set prediction accuracy was 97%. ConclusionThe use of tuples of current-voltage characteristic descriptors of acupuncture points in the classifiers could be used to predict the success of surgical treatment with satisfactory accuracy. The model can be a valuable tool to support physicians’ diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.