Abstract

The discovery of the lactate-polymerizing enzyme (LPE) enabled the biosynthesis of a polyhydroxyalkanoate (PHA) containing 2-hydroxyalkanoate (2HA). Amino acids are potential precursors of 2HA with various side chain structures if appropriate enzymes are used to convert amino acids to 2HA-coenzyme A (CoA) as the substrate for LPE. In this study, the suitability and utility of (R)-2-hydroxy-4-methylvalerate (2H4MV) dehydrogenase (LdhA) and 2H4MV-CoA transferase (HadA) from Clostridium difficile as 2HA-CoA-supplying enzymes were investigated. By expressing LPE, LdhA, and HadA in Escherichia coli DH5α, we successfully produced poly(3-hydroxybutyrate-co-2HA) [P(3HB-co-2HA)] from a related or unrelated carbon source. The 2HA units incorporated into PHA from unrelated carbon sources were primarily 2H4MV and 2-hydroxy-3-phenylpropionate (2H3PhP), which were assumed to be derived from endogenous leucine and phenylalanine, respectively. Furthermore, P(3HB-co-22mol% 2HA) synthesis was demonstrated by means of saccharified sugars, which are an abundant and renewable feedstock for polymer production from hemicellulosic biomass (Japanese cedar) as the carbon source. Our study shows that several types of 2HA units such as 2H4MV and 2H3PhP are endogenous monomers for PHA biosynthesis in E.coli expressing LdhA and HadA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.