Abstract

Current study describes the green, environmental friendly, and cost-effectiveness technique for the preparation of MgO nanoparticles (NPs) via white button mushroom aqueous extract. The synthesized MgO NPs were characterized using equipments such as X-ray diffraction, dynamic light scattering (DLS), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and thermal gravimetric analysis (TGA) for average crystalline size, particle size, morphology, elemental analysis, and weight loss of the materials, respectively. This study reports the application of gardened sizes of (20, 18.5, 18, 16.5, and 15nm) biosynthesized MgO NPs on seed germination. The smaller size (15nm) MgO NPs have been enhanced the seed germination and growth parameters as compared with remaining sizes of MgO NPs and control. The magnesium oxide NPs penetrates into peanut seeds and affecting on seed germination and growth rate mechanism. In addition, this germination found to be high in seeds than germination on selected soil plot MgO NPs (0.5mg/L stable concentrations) compared to different size of MgO NPs and control. Physicochemical methods indicated that the MgO NPs are able to penetrate into the seed coat and support water uptake inside of seeds. Probably, this positive effect may cause for the uptake of MgO NPs by the plants, as indicated in the UV and SEM analyses. As the smaller size (15nm) of MgO NPs particles stimulates the development of seedling and growth enhancement of peanut, it clearly indicates that the current study is helpful in growing of peanuts in large-scale agricultural production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.