Abstract

Employing isotope incubation studies, the biosynthetic pathway leading to a series of benzylic derivatives was elucidated in the fermentation broth of the edible mushroom Ischnoderma resinosum (P. Karst). Twenty-six hydroxy- and methoxy- benzylic derivatives were screened by gas chromatography-mass spectrometry (GC-MS) of which 13 were detected in the culture media. Results from the isotope incubation studies showed the transformation of both benzyl alcohol and benzoic acid into benzaldehyde. Benzaldehyde was then converted into 4-methoxybenzaldehyde via hydroxylation and subsequent methylation of the 4-C position. The resulting 4-methoxybenzaldehyde was then hydroxylated in the 3-C position followed by methylation into 3,4-dimethoxybenzaldehyde. Based on these findings, a novel metabolic scheme for the biosynthesis of benzylic derivatives in I. resinosum was proposed. The knowledge of the biosynthetic pathway was utilized to produce 4-hydroxy-3-methoxybenzaldehyde (vanillin) from 4-hydroxy-3-methoxybenzoic acid (vanillic acid). This is the first report to elucidate the biosynthetic pathway of benzyl derivatives and production of vanillin from I. resinosum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.