Abstract

In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased Vmax and Km of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (Tm) and unfolding enthalpy (ΔH) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.