Abstract
This article reports the biosorption potential of Gum ghatti (Gg)-grafted-acrylic acid (AA) polymer and its susceptibility to biodegradation by Bacillus subtilis (BS) in two different liquid media, i.e. phosphate buffered saline (PBS) and mineral salt medium (MSM). The progress of biodegradation was monitored after every 15 days using FT-IR and SEM techniques. The degradation of the polymer was further evidenced by a loss of weight of 23.2% and 27% in BS-MSM and BS-PBS, respectively, after 60 days. The AA-grafted polymer was then utilized for the removal of Pb(II) and Cu(II) from aqueous solution. The adsorption isotherm data were studied using Langmuir, Freundlich, Temkin, Flory–Huggins and Dubinin–Kaganer–Radushkevich isothermal models. High values of correlation coefficients confirmed the applicability of Langmuir isotherm model used to determine the adsorption capacity of the AA-grafted polymer. The maximum adsorption capacity was found to be 84.74mg/g for Cu(II) and 310.55mg/g for Pb(II). Kinetic data were evaluated using pseudo first order, pseudo second order, Elovich, intraparticle diffusion and liquid film diffusion models. The experimental kinetic data fitted well with the pseudo second order rate model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.