Abstract
Background: Environmental estrogens alter hormone signaling in the body that can induce reproductive abnormalities in both humans and wildlife. Available testing systems for estrogens are focused on specific systems such as reproduction. Crucially, however, the potential for significant health impacts of environmental estrogen exposures on a variety of body systems may have been overlooked.Objective: Our aim was to develop and apply a sensitive transgenic zebrafish model to assess real-time effects of environmental estrogens on signaling mechanisms in a whole body system for use in integrated health assessments.Methods: We created a novel transgenic biosensor zebrafish containing an estrogen-inducible promoter derived with multiple tandem estrogen responsive elements (EREs) and a Gal4ff-UAS system for enhanced response sensitivity.Results: Using our novel estrogen-responsive transgenic (TG) zebrafish, we identified target tissues for environmental estrogens; these tissues have very high sensitivity even at environmentally relevant concentrations. Exposure of the TG fish to estrogenic endocrine-disrupting chemicals (EDCs) induced specific expression of green fluorescent protein (GFP) in a wide variety of tissues including the liver, heart, skeletal muscle, otic vesicle, forebrain, lateral line, and ganglions, most of which have not been established previously as targets for estrogens in fish. Furthermore, we found that different EDCs induced GFP expression with different tissue response patterns and time trajectories, suggesting different potential health effects.Conclusion: We have developed a powerful new model for understanding toxicological effects, mechanisms, and health impacts of environmental estrogens in vertebrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.