Abstract

Because of unparalleled advantages over other cells, stem cells are widely used in genetic diagnosis, drug delivery, and regenerative medicine. However, because the content of stem cells in the organism is far from satisfactory, it is of great significance of stem cells to in vitro proliferation and differentiation. However, many stem cell cultures have low expansion efficiency and stem cells lose their value-adding ability and differentiation ability after many generations of culture. To solve these problems, people hope to more realistically simulate the microenvironment in which stem cells grow in vivo. Cell scaffolds gradually evolve from 2D structures to 3D structures. The addition of growth factors influences cell behavior from internal biochemical conditions and the development of smart bioreactors gradually make progress to more precise regulate the external conditions of stem cell. In this paper, the key factors for constructing the microenvironment of stem cell growth were analyzed, and we reviewed the application of bioreactors and 3D scaffolds in stem cell cultivation. Finally, this paper indicated the development directions of stem cell culture in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.