Abstract
BACKGROUND(Z,E)‐9,12‐tetradecadienyl acetate (ZETA, Z9,E12‐14:OAc) is a major sex pheromone component for many stored‐product moth species. This pheromone is used worldwide for mating disruption, detection, monitoring, and mass trapping in raw and processed food storage facilities. In this study, we demonstrate the biological production of ZETA pheromone by engineered yeast Saccharomyces cerevisiae.RESULTSWe mined the pheromone gland transcriptome data of the almond moth, Ephestia (Cadra) cautella (Walker), to trace a novel E12 fatty acyl desaturase and expressed candidates heterologously in yeast and Sf9 systems. Furthermore, we demonstrated a tailor‐made ZETA pheromone bioproduction in yeast through metabolic engineering using this E12 desaturase, in combination with three genes from various sources coding for a Z9 desaturase, a fatty acyl reductase, and an acetyltransferase, respectively. Electrophysiological assays (gas chromatography coupled to an electroantennographic detector) proved that the transgenic yeast‐produced ZETA pheromone component elicits distinct antennal responses.CONCLUSIONThe reconstructed biosynthetic pathway in yeast efficiently produces ZETA pheromone, leaves an undetectable level of biosynthetic intermediates, and paves the way for the economically competitive high‐demand ZETA pheromone's bioproduction technology for high‐value storage pest control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.