Abstract

The large conductance Ca2+-activated K+ channels in differentiated mouse neuroblastoma N1E-115 cells have been studied using patch-clamp single-channel current recording in excised membrane patches. These channels displayed a unitary conductance of 200 pS under symmetrical K+ concentrations. Effects of blockade by TEA+, Cs+ and Ba2+ were different and argued for distinct action mechanisms. The open probability of these channels increased with increasing internal calcium and membrane potential. Maximum sensitivity of these channels ranged over physiological variations of internal calcium at membrane potentials close to zero, suggesting a physiological role for these channels in regulating the membrane potential and Ca2+ influx through voltage-dependent Ca2+ channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.