Abstract

Watermelon Fusarium wilt is one of the most severe soil-borne diseases caused by Fusarium oxysporum f. sp. niveum. In this study, the population of F. oxysporum was quickly monitored by real-time PCR and DNA array in watermelon Fusarium wilt infected soils treated with Paenibacillus polymyxa SQR21 enhanced bio-organic fertilizer (BIO) at the beginning of nursery growth and/or at the beginning of transplanting. The fungal community composition was investigated by molecular cloning and DGGE techniques. The real-time PCR results showed the F. oxysporum population in the rhizosphere soil decreased from 8.56 × 104 colony-forming units (cfu) g−1 rhizosphere soil to 9.41 × 103 cfu g−1 rhizosphere soil after BIO application and the DNA array detection signals of F. oxysporum population weakened. The difference between F. oxysporum abundance of BIO amended and not amended bulk soils was lower than 104 cfu g−1 soil. DGGE profile indicated that BIO application changed the fungal community structure in the rhizosphere soils; the molecular cloning data revealed that consecutive applications of BIO at nursery and transplanting stages not only decreased Ascomycota and increased Basidiomycota abundance in the rhizosphere soil but also caused the apperance of unique fungal group which were not found in the control. The beneficial fungi Chaetomium sp. Aspergillus penicillioides were found in the BIO amended treatment, while some harmful fungi such as F. oxysporum, Rhizoctonia solani, and Fusarium solani were only detected in the control. Data from this study indicated that BIO application can control watermelon Fusarium wilt by suppressing the population of F. oxysporum and changing the fungal community structure in the rhizosphere soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.