Abstract

One of the most important properties of cellulolytic enzyme is its ability to convert cellulosic polymer into monomeric fermentable sugars which are carbohydrate by nature can efficiently convert into biofuels. However, higher production costs of these enzymes with moderate activity-based stability are the main obstacles to making cellulase-based applications sustainably viable, and this has necessitated rigorous research for the economical availability of this process. Using water hyacinth (WH) waste leaves as the substrate for cellulase production under solid state fermentation (SSF) while treating the fermentation production medium with CuO (cupric oxide oxide) bionanocatalyst have been examined as ways to make fungal cellulase production economically feasible. Herein, a sustainable green synthesis of CuO bionanocatalyst has been performed by using waste leaves of WH. Through XRD, FT-IR, SEM, and TEM analysis, the prepared CuO bionanocatalyst's physicochemical properties have been evaluated. Furthermore, the effect of CuO bionanocatalyst on the temperature stability of raw cellulases was observed, and its half-life stability was found to be up to 9 h at 65 °C. The results presented in the current investigation may have broad scope for mass trials for various industrial applications, such as cellulosic biomass conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.