Abstract

PurposeCongenital telipes equinovarus (CTEV) or club foot is a historical foot deformity where the foot is turned in and pointing down causing the subject to walk on the outside edges of foot. The non‐surgical correction of this deformity is an unsolved challenging problem in the medical domain and it becomes interesting due to the increasing number of such patients. The purpose of this paper is to build a biomodel of this historical foot deformity in newborn babies and hence an attempt to develop a corrective procedure using rapid prototyping (RP).Design/methodology/approachBiomodeling is a new technology that allows medical scan data sets to generate solid plastic replicas of anatomical structures. The medical scan data sets of live club foot baby patients were acquired and after image processing, biomodels of four live unilateral club foot baby patients are developed in a fused deposition modeling RP system.FindingsThe paper shows the location and position of abnormal bones and abnormal tarsal joints and is useful for management of club foot deformity in newborn babies. On visual study, it is observed that the talus is underdeveloped, talar neck is shorter and deviated in the medial and planter direction.Research limitations/implicationsThe major outcome of this paper is the detailed geometrical visualization of talus bone of club foot and normal foot that assists in diagnosis and better treatment of CTEV. In future, the developed biomodels of club foot help to develop a corrective device that assists in bringing the club to normal foot geometrys.Practical implicationsThese developed biomodels of club foot help in deciding the best corrective procedure for surgeons. The geometrical comparison between normal and club foot helps in developing a non‐surgical corrective procedure of this historical foot deformity. A 3D representation of talus bone provides an opportunity to view talus and analyse the ankle joint geometry that develops a favorable condition for diagnosis and treatment of this deformity.Originality/valueThe first time developed biomodels of clubfeet helps orthopaedic surgeons in preoperative surgical planning and consequently in carrying out biomechanical studies of club foot. The presented research plays a major role in planning a non‐surgical corrective procedure of this historical deformity. It also provides a platform for finite element analysis of club foot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.