Abstract
Animal experiments provided direct evidence that myocyte apoptosis may be a causal mechanism of heart failure, suggesting that inhibition of this cell death process may constitute the basis for novel therapies. The data suggested that even inhibition of a small fraction of cardiac myocyte apoptosis could be instrumental in preventing cardiomyopathy. Here we analyze the mechanisms by which nanobacteria (NB) are expected to contribute to the inhibition of cellular functions in the heart. NB are protected by a nanocrystalline apatite shell. Under environmental stress, they produce a slime providing ideal conditions for individual mineralization and rapid formation of giant thrombogenic assemblies. We establish a model based upon a possible synergistic impact of physical and chemical stimuli on NB, exposing the principles of a novel preventive strategy promising to inhibit formation of NB clusters in the circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.