Abstract
Here we report on the biomimetic synthesis of Pd nanoparticles for use as models of green catalytic systems. The nanomaterials are synthesized using peptides isolated via phage-display techniques that are specific to Pd surfaces. Using this synthetic strategy, peptide-functionalized Pd nanoparticles of 1.9 +/- 0.3 nm in diameter are produced, which are soluble and stable in aqueous solutions. Once characterized, these biobased materials were then used as catalysts to drive the formation of C-C bonds using the Stille coupling reaction. Under the conditions of an aqueous solvent at room temperature, quantitative product yields were achieved within 24.0 h employing catalyst loadings of > or = 0.005 mol % of Pd. Additionally, high TOF values of 3207 +/- 269 mol product x (mol Pd x h)(-1) have been determined for these materials. The catalytic reactivity was then examined over a set of substrates with substitutions for both functional group and halide substituents, demonstrating that the peptide-based Pd nanoparticles are reactive toward a variety of functionalities. Taken together, these bioinspired materials represent unique model systems for catalytic studies to elucidate ecologically friendly reactive species and conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.