Abstract

Periosteum as an important component in the construct of bone is mainly responsible for providing nourishment and regulating osteogenic differentiation. When bone defect happens, the functionality of periosteum will also be influenced, furthermore, it will finally hamper the process of bone regeneration. However, fabrication of an artificial periosteum with the capabilities in accelerating angiogenesis and osteogenesis in the defect area is still a challenge for researchers. In this study, we fabricated an organic-inorganic hybrid biomimetic periosteum by electrospinning, which can induce mineralization in situ and control the ions release for long-term in local area. Further, this system exhibited potential capabilities in promoting in vitro, which means the potentiality in accelerating bone regeneration in vivo. Calcium phosphate nanoparticles (CaPs) were fabricated by emulsion method, then CaPs were further incorporated with gelatin-methacryloyl (GelMA) by electrospinning fibers to construct the hybrid hydrogel fibers. The fibers exhibited satisfactory morphology and mechanical properties, additionally, controlled ions release could be observed for over 10days. Further, significant mineralization was proved on the surface of hybrid fibers after 7days and 14days' co-incubation with simulated body fluid (SBF). Then, favorable biocompatibility of the hybrid fibers was approved by co-cultured with MC3T3-E1 cells. Finally, the hybrid fibers exhibited potential capabilities in promoting angiogenesis and osteogenesis by co-culture with HUVECs and MC3T3-E1 cells. This biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum provided a promising strategy to develop periosteum biomaterials with angiogenesis and osteogenesis capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.