Abstract

This study aimed to investigate whether flow fluid shear stress (FFSS)-mediated signal transduction affects the function of Piezo1 ion channel in chondrocyte and to further explore the role of mechanical overloading in development of temporomandibular joint osteoarthritis (TMJ OA). Immunohistochemical staining was used to determine the expression of Piezo1 in TMJ OA tissue collected from rat unilateral anterior crossbite (UAC) models. Chondrocytes harvested from normal adult SD rats were treated with FFSS (0, 4, 8, 12 dyn/cm2) invitro. Immunofluorescent staining, real-time polymerase chain reaction, western blotting, flow cytometry and phalloidin assay were performed to detect the changes of cellular morphology as well as the expression of Piezo1 and certain pro-inflammatory and degradative factors in chondrocyte. Immunohistochemical analysis revealed that significantly increased Piezo1 expression was associated with UAC stimulation (p < .05). As applied FFSS escalated (4, 8 and 12 dyn/cm2), the expression levels of Piezo1, ADAMTS-5, MMP-13 and Col-X gradually increased, compared with the non-FFSS group (p < .05). Administering Piezo1 ion channel inhibitor to chondrocytes beforehand, it was observed that expression of ADAMTS-5, MMP-13 and Col-X was substantially decreased following FFSS treatment (p < .05) and the effect of cytoskeletal thinning was counteracted. The activated Piezo1 ion channel enhanced intracellular Ca2+ excess in chondrocytes during abnormal mechanical stimulation and the increased intracellular Ca2+ thinned the cytoskeleton of F-actin. Mechanical overloading activates Piezo1 ion channel to promote pro-inflammation and degradation and to increase Ca2+ concentration in chondrocyte, which may eventually result in TMJ OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.