Abstract
Animals have evolved a vast diversity of mechanisms to detect sounds. Auditory organs are thus used to detect intraspecific communicative signals and environmental sounds relevant to survival. To hear, terrestrial animals must convert the acoustic energy contained in the airborne sound pressure waves into neural signals. In mammals, spectral quality is assessed by the decomposition of incoming sound waves into elementary frequency components using a sophisticated cochlear system. Some insects like katydids (or bushcrickets) have evolved biophysical mechanisms for auditory processing that are remarkably equivalent to those of mammals. Located on their front legs, katydid ears are small, yet are capable of performing several of the tasks usually associated with mammalian hearing. These tasks include air-to-liquid impedance conversion, signal amplification, and frequency analysis. Impedance conversion is achieved by a lever system, a mechanism functionally analogous to the mammalian middle ear ossicles, yet morphologically distinct. In katydids, the exact mechanisms supporting frequency analysis seem diverse, yet are seen to result in dispersive wave propagation phenomenologically similar to that of cochlear systems. Phylogenetically unrelated katydids and tetrapods have evolved remarkably different structural solutions to common biophysical problems. Here, we discuss the biophysics of hearing in katydids and the variations observed across different species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.