Abstract

Tissue-engineered heart valves constructed from a xenogeneic or allogeneic decellularized matrix might overcome the disadvantages of current heart valve substitutes. One major necessity besides effective decellularization is to preserve the biomechanical properties of the valve. Native and decellularized porcine pulmonary heart valve conduits (PPVCs) (with [n = 10] or without [n = 10] cryopreservation) were compared to cryopreserved human pulmonary valve conduits (n = 7). Samples of the conduit were measured for wall thickness and underwent tensile tests. Elongation measurement was performed with a video extensometer. Decellularized PPVC showed a higher failure force both in longitudinal (+73%; P < 0.01) and transverse (+66%; P < 0.001) direction compared to human homografts. Failure force of the tissue after cryopreservation was still higher in the porcine group (longitudinal: +106%, P < 0.01; transverse: +58%, P < 0.001). In comparison to human homografts, both decellularized and decellularized cryopreserved porcine conduits showed a higher extensibility in longitudinal (decellularized: +61%, P < 0.001; decellularized + cryopreserved: +51%, P < 0.01) and transverse (decellularized: +126%, P < 0.001; decellularized + cryopreserved: +118%, P < 0.001) direction. Again, cryopreservation did not influence the biomechanical properties of the decellularized porcine matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.