Abstract

A simplified finite element model of a human thorax had been developed for probing into the mechanical response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian–Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distributions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human thorax were obtained from the finite element model, and were then applied in the mathematical model as the boundary conditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axelsson’s model. Probability of different injury levels is predicted by the normalized work in seven scenarios, as could be seen in Fig. 12. The results indicate that the level of lung injury was higher when the human thorax was located in a complex environment. In general, the level of lung injury increases with the total normalized work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.