Abstract

To compare mechanical properties of intact feline medial collateral ligaments and three techniques for treatment of feline medial tarsal instability. Controlled laboratory study. Forty-eight normal, adult feline tarsi. Three repairs were tested: a bone tunnel with polypropylene (PP) suture, a bone tunnel with polyethylene (PE) cord, and a knotless anchor technique with PE cord. A cyclic (6-N preload; 5-N amplitude; 2-Hz frequency) tensile test (600 cycles) was performed on feline tarsi with either the long or the short medial tarsal ligament intact, with each reconstruction technique followed by a single-cycle load-to-failure test (0.5 mm/s) with a failure point at 2 mm of displacement. Total elongation, peak-to-peak elongation, stiffness, and maximum load to failure point were compared with the intact condition. No differences in stiffness, total elongation, or peak-to-peak elongation were found between specimens repaired with the knotless technique and intact controls (P > .04), whereas tarsi repaired with the tunnel technique and PP were weaker (P < .008). Total and conditioning elongation were greater after tunnel reconstruction with PP than after knotless reconstruction (P = .005). Mean load to 2 mm of displacement tended (P = .03) to be higher after knotless than after knotted PP repairs and did not differ (P = .47) between tarsi repaired with the tunnel or anchor repairs with PE. The mechanical properties of intact tarsi were superior to those of tarsi repaired with tunnel techniques and PP but were similar to those of tarsi repaired with knotless techniques with PE. Feline tarsal stabilization with the knotless technique for tarsal medial collateral ligament insufficiency may reduce the requirement for or duration of postoperative coaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.